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Abstract
Novikov algebras were introduced in connection with the Poisson brackets of
hydrodynamic-type and Hamiltonian operators in formal variational calculus.
The goal of this paper is to study Novikov algebras with non-degenerate
associative symmetric bilinear forms, which we call quadratic Novikov
algebras. Based on the classification of solvable quadratic Lie algebras
of dimension not greater than 4 and Novikov algebras in dimension 3, we
show that quadratic Novikov algebras up to dimension 4 are commutative.
Furthermore, we obtain the classification of transitive quadratic Novikov
algebras in dimension 4. But we find that not every quadratic Novikov algebra
is commutative and give a non-commutative quadratic Novikov algebra in
dimension 6.

PACS numbers: 02.20.−a, 02.10.−v, 47.20.−k

1. Introduction

Novikov algebras were introduced in connection with the Poisson brackets of hydrodynamic-
type [1–3] and Hamiltonian operators in the formal variational calculus [4–9]. A Novikov
algebra A is a vector space over a field F with a bilinear product (x, y) �→ xy satisfying

(xy)z − x(yz) = (yx)z − y(xz), (1)

(xy)z = (xz)y, (2)

for any x, y, z ∈ A. The commutator of A,

[x, y] = xy − yx, (3)

defines a Lie algebra g = g(A), which is called the sub-adjacent Lie algebra of A. Novikov
algebras are a special class of left symmetric algebras which only satisfy equation (1). Left
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symmetric algebras are a class of non-associative algebras arising from the study of affine
manifolds, affine structures and convex homogeneous cones [10–14].

A bilinear form f : A × A → F is associative if and only if

f (xy, z) = f (x, yz), ∀x, y, z ∈ A. (4)

The goal of this paper is to study the pair (A, f ), where A denotes a Novikov algebra
and f denotes a non-degenerate associative symmetric bilinear form of A. In abuse of
notation we will also use the term quadratic Novikov algebra for denoting such a pair. The
motivation for studying quadratic Novikov algebras comes from the fact that Lie or associative
algebras with forms have important applications in several areas of mathematics and physics,
such as the structure theory of finite-dimensional semi-simple Lie algebras, the theory of
complete integrable Hamiltonian systems and the classification of statistical models over
two-dimensional graphs.

There has been a lot of progress in the study of Novikov algebras [15–25]. It is given in
[26] that quadratic Novikov algebras are associative. In this paper, we show that quadratic
Novikov algebras up to dimension 4 are commutative, although the classification of Novikov
algebras in dimension 4 is not completely given. And we also show that not every quadratic
Novikov algebra is commutative.

The paper is organized as follows. In section 2, we show that (g(A), f ) is a quadratic Lie
algebra, where (A, f ) denotes a quadratic Novikov algebra and g(A) denotes the sub-adjacent
Lie algebra of A. In section 3, we give the classification of solvable quadratic Lie algebras up
to dimension 4. In section 4, based on the classification of solvable quadratic Lie algebras of
dimension not greater than 4 and Novikov algebras in dimension 3, we show that quadratic
Novikov algebras up to dimension 4 are commutative. In section 5, we give the classification
of transitive quadratic Novikov algebras in dimension 4. In section 6, we show that not every
quadratic Novikov algebra is commutative. In section 7, we list some conclusions.

Throughout this paper we assume that the algebras are of finite dimension over C.

2. Some properties on quadratic Novikov algebras

Suppose that (A, f ) is a quadratic Novikov algebra. Let H be a subspace of A and g(A)

be the sub-adjacent Lie algebra of A. Let H⊥ = {x ∈ A | f (x, y) = 0,∀y ∈ H } and
Z(A) = {x ∈ A | xy = yx = 0,∀y ∈ A}. It is easy to see that

Z(A) = (AA)⊥, (5)

which implies that

dim Z(A) + dim AA = dim A. (6)

The pair (g, f ) is called a quadratic Lie algebra if g is a Lie algebra and f is a non-
degenerate symmetric bilinear form of g satisfying

f (x, [y, z]) = f ([x, y], z), ∀x, y, z ∈ g. (7)

Note that for a quadratic Lie algebra, the adjoint representation is equivalent to the co-adjoint
representation. Such Lie algebras are called symmetric self-dual Lie algebras by physicists
(e.g. [27]). References [27–29] show the importance of quadratic Lie algebras in conformal
field theory.

Proposition 1. Let (A, f ) be a quadratic Novikov algebra and g(A) be the sub-adjacent Lie
algebra of A. Then (g(A), f ) is a quadratic Lie algebra.
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Proof. Since (A, f ) is a quadratic Novikov algebra, then

f ([x, y], z) = f (xy, z) − f (yx, z)

= f (x, yz) − f (zy, x)

= f (x, [y, z])

for any x, y, z ∈ A. It follows that (g(A), f ) is a quadratic Lie algebra. �

There has been a lot of progress in the study of quadratic Lie algebras. Based on
proposition 1, we can get some properties on quadratic Novikov algebras by the study on
quadratic Lie algebras.

3. Quadratic Lie algebras

Definition 1. Let (g, f ) be a quadratic Lie algebra and H be an ideal of g. H is called
non-degenerate if f |H×H is non-degenerate. H is called isotropic if f |H×H = 0.

Proposition 2. Let (g, f ) be a quadratic Lie algebra. Then we have the following.

(1) C(g) = [g, g]⊥.
(2) Let H be an ideal of g. Then H⊥ is an ideal of g. Furthermore, assume that H is

non-degenerate. Then H⊥ is also non-degenerate and g = H ⊕ H⊥.

As a sequence of proposition 2, we have

dim C(g) + dim[g, g] = dim g. (8)

If g is solvable, then [g, g] �= g, which implies that dim C(g) � 1. In the following, we will
discuss the classification of solvable quadratic Lie algebras (g, f ) up to dimension 4 case by
case.

Case 1. dim g = 1.

g is Abelian and there exists a basis {e} of g such that f (e, e) = 1.

Case 2. dim g = 2.

There are two cases as follows.

(1) If dim C(g) = 2, then g is Abelian and there exists a basis {e1, e2} of g such that

f (e1, e1) = f (e2, e2) = 1

and others zero.
(2) If dim C(g) = 1, we must have [g, g] = 0, which contradict to dim[g, g] = 1.

Case 3. dim g = 3.

There are two cases as follows.

(1) If C(g) is not isotropic, then there exists an element x ∈ C(g) such that f (x, x) �= 0. By
proposition 2,

g = Cx ⊕ x⊥,

where x⊥ is a solvable quadratic Lie algebra in dimension 2. It follows that g is Abelian.
(2) If C(g) is isotropic, then dim C(g) = 1. We must have dim[g, g] � 1, which contradicts

to dim[g, g] = 2.

Case 4. dim g = 4.

There are two cases as follows.
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(1) If C(g) is not isotropic, then there exists an element x ∈ C(g) such that f (x, x) �= 0. By
proposition 2,

g = Cx ⊕ x⊥,

where x⊥ is a solvable quadratic Lie algebra in dimension 3. It follows that g is Abelian.
(2) If C(g) is isotropic, then dim C(g) = 1 or 2.

(1) If dim C(g) = 2, we must have dim[g, g] � 1, which contradicts to dim[g, g] = 2.
(2) If dim C(g) = 1, then dim[g, g] = 3 and there exists a basis {e1, e2, e3, e4}

of g such that {e4} is a basis of C(g) and {e2, e3, e4} is a basis of [g, g] and
f (e1, e4) = f (e4, e1) = f (e2, e3) = f (e3, e2) = 1 and others zero. Since
f ([e2, e3], e2) = f ([e2, e3], e3) = 0,

[e2, e3] = ke4, (9)

where k �= 0 since dim[g, g] = 3. Take k = 1. Since f ([e1, e2], e2) =
f ([e1, e2], e1) = 0 and f ([e1, e3], e3) = f ([e1, e3], e1) = 0, then

[e1, e2] = ae2, [e1, e3] = be3. (10)

It is easy to show that

a = f (ae2, e3) = f ([e1, e2], e3) = f (e1, [e2, e3]) = 1

b = f (be3, e2) = f ([e1, e3], e2) = f (e1, [e3, e2]) = −1.

Therefore, we have

Theorem 1. The following is the classification of solvable quadratic Lie algebras up to
dimension 4.

(1) If dim g = 1, then g is Abelian and there exists a basis {e1} such that f (e1, e1) = 1.
(2) If dim g = 2, then g is Abelian and there exists a basis {e1, e2} such that f (e1, e1) =

f (e2, e2) = 1 and others zero.
(3) If dim g = 3, then g is Abelian and there exists a basis {e1, e2, e3} such that

f (e1, e1) = f (e2, e2) = f (e3, e3) = 1 and others zero.
(4) Solvable quadratic Lie algebras in dimension 4 are one of the following cases.

(1) g is Abelian and there exists a basis {e1, e2, e3, e4} such that f (e1, e1) = f (e2, e2) =
f (e3, e3) = f (e4, e4) = 1 and others zero.

(2) There exists a basis {e1, e2, e3, e4} of g such that [e1, e2] = e2, [e1, e3] =
−e3, [e2, e3] = e4 and f (e1, e4) = f (e4, e1) = f (e2, e3) = f (e3, e2) = 1 and
others zero.

4. Quadratic Novikov algebras up to dimension 4

Thanks to theorem 1, quadratic Novikov algebras up to dimension 3 are commutative. If
(A, f ) is a commutative quadratic Novikov algebra, then

f (xy, z) = f (x, yz) = f (x, zy)

for any x, y, z ∈ A. Non-degenerate symmetric bilinear forms satisfying

f (xy, z) = f (x, zy), ∀x, y, z ∈ A (11)

on Novikov algebras up to dimension 3 are given in [25].
Let (A, f ) be a non-commutative quadratic Novikov algebra in dimension 4. It follows

that (g(A), f ) is the very last part (b) of theorem 1. Then we must have

dim AA � 3, (12)
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since [g(A), g(A)] ⊂ AA ⊂ A. It is easy to check that the list of Lie ideals is given by
{e4}, {e2, e4}, {e3, e4}, {e2, e3, e4}, {e1, e2, e3, e4}.

It is well known that a finite-dimensional Novikov algebra contains a largest transitive
ideal N(A) and the quotient algebra A/N(A) is a direct sum of fields. Since the ideal N(A)

is naturally a Lie ideal, then N(A) must be one of the above cases. If dim N(A) = 1, then
A/N(A) = C ⊕ C ⊕ C. If dim N(A) = 2, then A/N(A) = C ⊕ C. Each of these cases is
impossible since dim[g(A), g(A)] = 3.

4.1. N(A) = {e2, e3, e4}
The sub-adjacent Lie algebra of N(A) is Heisenberg and e1e1 = ke1 + e, where k �= 0 and
e ∈ N(A). By the classification of transitive Novikov algebras in dimension 3, there exists
another basis of N(A), which is also denoted by {e2, e3, e4}, satisfying one of the following
four cases:

(1) e2e3 = e4, e3e2 = −e4.
(2) e2e2 = e4, e2e3 = e4, e3e2 = −e4, e3e3 = le4.

(3) e2e3 = e4, e3e2 = le4, e3e3 = e2, l �= 1.

(4) e3e2 = e4, e3e3 = e2.

For any case, [e2, e3] = me4, [e2, e4] = [e3, e4] = 0, where m �= 0, which implies that

f (e4, x) = 0, ∀x ∈ N(A). (13)

Since f is non-degenerate, then e4 ∈ C(g(A)) and f (e4, e1) �= 0. Also we have xe4 = e4x = 0
for any x ∈ N(A), which implies

f (e1e4, e2) = f (e1e4, e3) = f (e1e4, e4) = 0. (14)

It is easy to show that

mf (e1e4, e1) = f (e1, [e2, e3]e1) = f (e1, e2(e3e1) − e3(e2e1))

= f ((e1e2)e3 − (e1e3)e2, e1) = 0.

Since m �= 0 and f is non-degenerate, then e1e4 = 0, i.e.,

xe4 = e4x = 0, ∀x ∈ A, (15)

since e4 ∈ C(g(A)). The equation (15) implies that

dim AA = 3, (16)

which contradicts to

dim AA = 4, (17)

since k �= 0 and dim[g(A), g(A)] = 3.

4.2. N(A) = A

It follows that dim AA = 3, which implies that dim Z(A) = 1. But Z(A) ⊂ C(g(A)), so we
have

Z(A) = {e4}. (18)
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Let H be the vector space spanned by {e1, e2, e3}, then A = H + Ce4 is a direct sum of
subspaces. Let ρ be the projection from A to H. Define a bilinear product on H by

ei · ej = ρ(eiej ), ∀i, j = 1, 2, 3. (19)

It is easy to show that (H, ·) is a transitive Novikov algebra and the sub-adjacent Lie algebra
g(H) satisfies

[e1, e2]H = e1 · e2 − e2 · e1 = e2, [e1, e3]H = −e3, [e2, e3]H = 0.

By the classification of transitive Novikov algebras in dimension 3, there exists another basis
of H, which is also denoted by {e1, e2, e3}, satisfying

e1 · e2 = e2, e1 · e3 = −e3 (20)

and otherwise zero. It follows that

e1e2 = e2 + ae4, e3e1 = be4, (21)

which implies that

f (e3, e2) = f (e3, e1e2) = f (e3e1, e2) = 0,

i.e., f is degenerate since f ([e1, e3], e1) = f ([e1, e3], e3) = 0 and e4 ∈ Z(A).
Therefore we have the following.

Theorem 2. Quadratic Novikov algebras up to dimension 4 are commutative.

5. The classification of transitive quadratic Novikov algebras in dimension 4

The goal of this section is to obtain the classification of transitive quadratic Novikov algebras
in dimension 4. We will do it as follows:

(1) obtain the classification of commutative transitive Novikov algebras;
(2) compute bilinear forms of Novikov algebras given by (1).
First of all, we list some notations. Let {e1, e2, . . . , en} be a basis of A, then

f (eiej , ek) = f (ei, ej ek).

Moreover, a bilinear form of A under the basis {e1, e2, . . . , en} is completely decided by the
matric F = (fij ), where

fij = f (ei, ej ).

f is non-degenerate if and only if det F �= 0. Let
{
ck
ij

}
be the set of structure constants of A,

i.e.,

eiej =
∑

k

ck
ij ek.

Denote the (form)character matrix of a Novikov algebra by
⎛
⎜⎝

∑
k ck

11ek · · · ∑
k ck

1nek

...
. . .

...∑
k ck

n1ek · · · ∑
k ck

nnek

⎞
⎟⎠ .

The classification of commutative transitive Novikov algebras over R in dimension 4 is
given in [21]. Then it is easy to show

Proposition 3. Commutative transitive Novikov algebras over C in dimension 4 are given as
follows:
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Type Character matrix Type Character matrix

(A1)

⎛
⎜⎜⎝

0 0 0 0
0 0 0 0
0 0 0 0
0 0 0 0

⎞
⎟⎟⎠ (A2)

⎛
⎜⎜⎝

0 0 0 0
0 0 0 0
0 0 0 0
0 0 0 e1

⎞
⎟⎟⎠

(A3)

⎛
⎜⎜⎝

0 0 0 0
0 0 0 0
0 0 e1 0
0 0 0 e2

⎞
⎟⎟⎠ (A4)

⎛
⎜⎜⎝

0 0 0 0
0 0 0 0
0 0 e1 e2

0 0 e2 0

⎞
⎟⎟⎠

(A5)

⎛
⎜⎜⎝

0 0 0 0
0 0 0 0
0 0 0 e1

0 0 e1 e3

⎞
⎟⎟⎠ (A6)

⎛
⎜⎜⎝

0 0 0 0
0 0 0 0
0 0 e1 0
0 0 0 e1

⎞
⎟⎟⎠

(A7)

⎛
⎜⎜⎝

0 0 0 0
0 e1 0 0
0 0 e1 0
0 0 0 e1

⎞
⎟⎟⎠ (A8)

⎛
⎜⎜⎝

0 0 0 0
0 0 0 e1

0 0 e1 0
0 e1 0 e2

⎞
⎟⎟⎠

(A9)

⎛
⎜⎜⎝

0 0 0 0
0 0 0 e1

0 0 e1 e2

0 e1 e2 e3

⎞
⎟⎟⎠

Example 1. Non-degenerate associative symmetric bilinear forms of (A7).

By the character matrix, we have f (e1, e1) = f (e2e2, e1) = f (e2, e2e1) = 0, f (e1, e3) =
f (e2e2, e3) = f (e2, e2e3) = 0, f (e1, e4) = f (e2e2, e4) = f (e2, e2e4) = 0, f (e1, e2) =
f (e3e3, e2) = f (e3, e3e2) = 0. It follows that det F = 0. Namely, there does not exist such
f that ((A7), f ) is a quadratic Novikov algebra.

Similar to example 1, we have

Proposition 4. There are not non-degenerate associative symmetric bilinear forms on Novikov
algebras (A6)–(A9). Transitive quadratic Novikov algebras are given as follows, where
det F �= 0.

Non-degenerate associative Non-degenerate associative
Type symmetric bilinear form Type symmetric bilinear form

(A1) F =

⎛
⎜⎜⎝

f11 f12 f13 f14

f12 f22 f23 f24

f13 f23 f33 f34

f14 f24 f34 f44

⎞
⎟⎟⎠ (A2) F =

⎛
⎜⎜⎝

0 0 0 f14

0 f22 f23 f24

0 f23 f33 f34

f14 f24 f34 f44

⎞
⎟⎟⎠

(A3) F =

⎛
⎜⎜⎝

0 0 f13 0
0 0 0 f24

f13 0 f33 f34

0 f24 f34 f44

⎞
⎟⎟⎠ (A4) F =

⎛
⎜⎜⎝

0 0 f13 f14

0 0 f14 0
f13 f14 f33 f34

f14 0 f34 f44

⎞
⎟⎟⎠

(A5) F =

⎛
⎜⎜⎝

0 0 0 f14

0 f22 0 f24

0 0 f14 f34

f14 f24 f34 f44

⎞
⎟⎟⎠
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6. A non-commutative quadratic Novikov algebra

A natural problem is whether every quadratic Novikov algebra is commutative. We find that
there exist non-commutative quadratic Novikov algebras in higher dimensions. The following
is an example in dimension 6.

Let A be a vector space with a basis {e1, e2, . . . , e6}. Define a bilinear product on A under
the basis {e1, e2, . . . , e6} by the matrix⎛

⎜⎜⎜⎜⎜⎜⎜⎝

0 0 0 0 0 0
0 0 0 0 0 0
0 0 0 0 0 0
0 0 0 0 e3 0
0 0 0 0 0 e1

0 0 0 e2 0 0

⎞
⎟⎟⎟⎟⎟⎟⎟⎠

and a bilinear form f of A under the basis {e1, e2, . . . , en} by the matrix

F =

⎛
⎜⎜⎜⎜⎜⎜⎜⎝

0 0 0 1 0 0
0 0 0 0 1 0
0 0 0 0 0 1
1 0 0 0 0 0
0 1 0 0 0 0
0 0 1 0 0 0

⎞
⎟⎟⎟⎟⎟⎟⎟⎠

.

Then A is a Novikov algebra since

(xy)z = x(yz) = 0, ∀x, y, z ∈ A. (22)

It is easy to check that f is a non-degenerate associative symmetric bilinear form of A. But A

is non-commutative.

7. Conclusions

Since the classification of Novikov algebras in higher dimensions, even in dimension 4, is also
unsolved, the direct study on quadratic Novikov algebras is difficult. A new idea is given in
this paper, and we get some interesting results. It is reasonable to believe that much more and
better results can be obtained by this way.

The following are some conclusions on quadratic Novikov algebras according to the
discussion in the previous sections.

(1) (g(A), f ) is a quadratic Lie algebra, where (A, f ) denotes a quadratic Novikov algebra
and g(A) denotes the sub-adjacent Lie algebra of A.

(2) Quadratic Novikov algebras up to dimension 4 are commutative. And it is easy to check
that they are also associative.

(3) There are not non-degenerate associative symmetric bilinear forms of some commutative
Novikov algebras, such as (A6), (A7), (A8), (A9).

(4) There are non-commutative quadratic Novikov algebras in higher dimensions.

Acknowledgments

This work was supported in part by the National Natural Science Foundation of China (no.
10431040). We are grateful to the referees for their valuable comments and suggestions.
We also thank Professor C Bai for his useful suggestions and communication with us on his
research in this field.



Novikov algebras with associative bilinear forms 14251

References

[1] Dubrovin B A and Novikov S P 1983 Sov. Math.—Dokl. 27 665–9
[2] Dubrovin B A and Novikov S P 1984 Sov. Math.—Dokl. 30 651–4
[3] Balinskii A A and Novikov S P 1985 Sov. Math.—Dokl. 32 228–31
[4] Gel’fand I M and Diki L A 1975 Russ. Math. Surv. 30 77–113
[5] Gel’fand I M and Diki L A 1976 Funct. Anal. Appl. 10 16–22
[6] Gel’fand I M and Dorfman I Ya 1979 Funct. Anal. Appl. 13 248–62
[7] Xu X 1995 Lett. Math. Phys. 33 1–6
[8] Xu X 1995 J. Phys A: Math. Gen. 28 1681–98
[9] Xu X 2000 J. Algebr. 223 396–437

[10] Kim H 1986 J. Differ. Geom. 24 373–94
[11] Perea A M 1981 J. Differ. Geom. 16 445–74
[12] Vinberg E B 1963 Transl. Mosc. Math. Soc. 12 340–403
[13] Bai C and Meng D 2000 Commun. Algebr. 28 2717–34
[14] Burde D 1998 Manuscr. Math. 95 397–411
[15] Zel’manov E I 1987 Sov. Math.—Dokl. 35 216–8
[16] Osborn J M 1992 J. Algebr. Geom. 1 1–13
[17] Osborn J M 1992 Commun. Algebr. 20 2729–53
[18] Osborn J M 1994 J. Algebr. 167 146–67
[19] Xu X 1996 J. Algebr. 185 905–34
[20] Xu X 1997 J. Algebr. 190 253–79
[21] Bai C and Meng D 2001 J. Phys. A: Math. Gen. 34 1581–94
[22] Bai C and Meng D 2001 Int. J. Theor. Phys. 40 1761–8
[23] Bai C and Meng D 2001 J. Phys. A: Math. Gen. 34 3363–72
[24] Bai C and Meng D 2001 J. Phys. A: Math. Gen. 34 6435–42
[25] Bai C and Meng D 2001 J. Phys. A: Math. Gen. 34 8193–7
[26] Bordemann M 1997 Acta. Math. Univ. Comen. 66 151–201
[27] Sfetsos K 1994 Phys. Lett. B 324 335
[28] Nippi C R and Witten N 1993 Group Phys. Rev. Lett. 71 3751
[29] Mohammedi N 1994 Group Phys. Rev. Lett. 325 371

http://dx.doi.org/10.1070/RM1975v030n05ABEH001522
http://dx.doi.org/10.1007/BF01075767
http://dx.doi.org/10.1007/BF01078363
http://dx.doi.org/10.1007/BF00750806
http://dx.doi.org/10.1088/0305-4470/28/6/021
http://dx.doi.org/10.1006/jabr.1999.8064
http://dx.doi.org/10.1080/00927870008826988
http://dx.doi.org/10.1080/00927879208824486
http://dx.doi.org/10.1006/jabr.1994.1181
http://dx.doi.org/10.1006/jabr.1996.0356
http://dx.doi.org/10.1006/jabr.1996.6911
http://dx.doi.org/10.1088/0305-4470/34/8/305
http://dx.doi.org/10.1023/A:1011968631980
http://dx.doi.org/10.1088/0305-4470/34/16/303
http://dx.doi.org/10.1088/0305-4470/34/33/308
http://dx.doi.org/10.1088/0305-4470/34/39/401
http://dx.doi.org/10.1016/0370-2693(94)90203-8
http://dx.doi.org/10.1103/PhysRevLett.71.3751

	1. Introduction
	2. Some properties on quadratic Novikov algebras
	3. Quadratic Lie algebras
	4. Quadratic Novikov algebras up to dimension 4
	4.1. N(A)
	4.2. N(A)=A

	5. The classification of transitive quadratic Novikov algebras in dimension 4
	6. A non-commutative quadratic Novikov algebra
	7. Conclusions
	Acknowledgments
	References

